samesource_C.Rd
Implemented in C.
samesource_C( quest, ref, n.iter, B.inv, W.inv.1, W.inv.2, U, nw, mu, burn.in, verbose = FALSE, marginals = FALSE )
quest | the questioned dataset (a \(n_q \times p\) matrix) |
---|---|
ref | the reference dataset (a \(n_r \times p\) matrix) |
n.iter | number of MCMC iterations excluding burn-in |
B.inv | prior inverse of between-source covariance matrix |
W.inv.1 | prior inverse of within-source covariance matrix (questioned items) |
W.inv.2 | prior inverse of within-source covariance matrix (reference items) |
nw | degrees of freedom |
mu | prior mean (\(p \times 1\)) |
burn.in | number of MCMC burn-in iterations |
verbose | if TRUE, be verbose |
marginals | if TRUE, also return the marginal likelihoods in the LR formula (default: FALSE) |
the log-BF value (base e), or a list with the log-BF and the computed marginal likelihoods:
value
: the log-BF value (base e)
log_ml_Hp
: log-BF numerator (from reference = questioned source)
log_ml_Hd_ref
: log-BF denominator from reference source
log_ml_Hd_quest
: log-BF denominator from questioned (!= reference) source
The hypothesis pair is:
\(H_p\): all ref
and quest
come from the same source
\(H_p\): quest
comes from source 1, ref
comes from source 2
See diwishart_inverse
for the parametrization of the Inverted Wishart.
See marginalLikelihood_internal
for further documentation.
Described in (Bozza et al. 2008) .
Observation level:
$$X_{ij} \sim N_p(\theta_i, W_i)$$ (i = source, j = items from source)
Group level:
$$\theta_i \sim N_p(\mu, B)$$
$$W_i \sim IW_p(\nu_w, U)$$
Hyperparameters:
$$B, U, \nu_w, \mu$$
Posterior samples of \(\theta\), \(W^{(-1)}\) can be generated with a Gibbs sampler.
Uses (Press 2012) parametrization.
$$X \sim IW(\nu, S)$$ with \(S\) is a \(p \times p\) matrix, \(\nu > 2p\) (the degrees of freedom).
Then: $$E[X] = \frac{S}{\nu - 2(p + 1)}$$
Bozza S, Taroni F, Marquis R, Schmittbuhl M (2008).
“Probabilistic Evaluation of Handwriting Evidence: Likelihood Ratio for Authorship.”
Journal of the Royal Statistical Society: Series C (Applied Statistics), 57(3), 329-341.
ISSN 1467-9876, doi: 10.1111/j.1467-9876.2007.00616.x
.
Press SJ (2012).
Applied Multivariate Analysis: Using Bayesian and Frequentist Methods of Inference.
Courier Corporation.
marginalLikelihood
Other core functions:
bayessource-package
,
get_minimum_nw_IW()
,
make_priors_and_init()
,
marginalLikelihood_internal()
,
marginalLikelihood()
,
mcmc_postproc()
,
two.level.multivariate.calculate.UC()