diwishart_inverse.RdComputes the pdf p_X(x) by knowing x^(-1)
diwishart_inverse(X_inv, df, Sigma, logd = FALSE, is_chol = FALSE)
| X_inv | inverse of X (the data) |
|---|---|
| df | degrees of freedom of the Inverted Wishart |
| Sigma | scale matrix of the Inverted Wishart |
| logd | if TRUE, return the log-density |
| is_chol | if TRUE, Sigma and X_inv are the upper Cholesky factors of Sigma and X_inv |
Computes the density of an Inverted Wishart (df, Sigma) in x, by supplying (x^(-1), df, Sigma) rather than (x, df, Sigma). Avoids a matrix inversion.
Uses (Press 2012) parametrization.
$$X \sim IW(\nu, S)$$ with \(S\) is a \(p \times p\) matrix, \(\nu > 2p\) (the degrees of freedom).
Then: $$E[X] = \frac{S}{\nu - 2(p + 1)}$$
Press SJ (2012). Applied Multivariate Analysis: Using Bayesian and Frequentist Methods of Inference. Courier Corporation.
Other C++ functions:
chol2inv(),
dmvnorm(),
inv_Cholesky_from_Cholesky(),
inv_sympd_tol(),
inv_triangular(),
isCholeskyOn(),
ldet_from_Cholesky(),
logCummeanExp(),
logCumsumExp(),
logSumExpMean(),
logSumExp(),
marginalLikelihood_internal(),
rmvnorm(),
rwish()
Other statistical functions:
diwishart_inverse_R(),
diwishart(),
dmvnorm(),
dwishart(),
riwish_Press(),
rmvnorm(),
rwish()
Other Wishart functions:
diwishart_inverse_R(),
diwishart(),
dwishart(),
get_minimum_nw_IW(),
riwish_Press(),
rwish()