diwishart_inverse.Rd
Computes the pdf p_X(x) by knowing x^(-1)
diwishart_inverse(X_inv, df, Sigma, logd = FALSE, is_chol = FALSE)
X_inv | inverse of X (the data) |
---|---|
df | degrees of freedom of the Inverted Wishart |
Sigma | scale matrix of the Inverted Wishart |
logd | if TRUE, return the log-density |
is_chol | if TRUE, Sigma and X_inv are the upper Cholesky factors of Sigma and X_inv |
Computes the density of an Inverted Wishart (df, Sigma) in x, by supplying (x^(-1), df, Sigma) rather than (x, df, Sigma). Avoids a matrix inversion.
Uses (Press 2012) parametrization.
$$X \sim IW(\nu, S)$$ with \(S\) is a \(p \times p\) matrix, \(\nu > 2p\) (the degrees of freedom).
Then: $$E[X] = \frac{S}{\nu - 2(p + 1)}$$
Press SJ (2012). Applied Multivariate Analysis: Using Bayesian and Frequentist Methods of Inference. Courier Corporation.
Other C++ functions:
chol2inv()
,
dmvnorm()
,
inv_Cholesky_from_Cholesky()
,
inv_sympd_tol()
,
inv_triangular()
,
isCholeskyOn()
,
ldet_from_Cholesky()
,
logCummeanExp()
,
logCumsumExp()
,
logSumExpMean()
,
logSumExp()
,
marginalLikelihood_internal()
,
rmvnorm()
,
rwish()
Other statistical functions:
diwishart_inverse_R()
,
diwishart()
,
dmvnorm()
,
dwishart()
,
riwish_Press()
,
rmvnorm()
,
rwish()
Other Wishart functions:
diwishart_inverse_R()
,
diwishart()
,
dwishart()
,
get_minimum_nw_IW()
,
riwish_Press()
,
rwish()