diwishart_inverse_R.Rd
Computes the density of an Inverted Wishart (df, Sigma) in X, by supplying (X^(-1), df, Sigma) rather than (X, df, Sigma). Avoids a matrix inversion.
diwishart_inverse_R(X.inv, df, Sigma, log = FALSE, is.chol = FALSE)
X.inv | inverse of X (the observation) |
---|---|
df | degrees of freedom |
Sigma | scale matrix |
log | if TRUE, return the log-density |
is.chol | if TRUE, Sigma and X.inv are the upper Cholesky factors of Sigma and X.inv |
the density in X
Computes the pdf p_X(x) by knowing x^(-1)
Uses (Press 2012) parametrization.
$$X \sim IW(\nu, S)$$ with \(S\) is a \(p \times p\) matrix, \(\nu > 2p\) (the degrees of freedom).
Then: $$E[X] = \frac{S}{\nu - 2(p + 1)}$$
Press SJ (2012). Applied Multivariate Analysis: Using Bayesian and Frequentist Methods of Inference. Courier Corporation.
Other R functions:
diwishart()
,
dwishart()
,
riwish_Press()
Other statistical functions:
diwishart_inverse()
,
diwishart()
,
dmvnorm()
,
dwishart()
,
riwish_Press()
,
rmvnorm()
,
rwish()
Other Wishart functions:
diwishart_inverse()
,
diwishart()
,
dwishart()
,
get_minimum_nw_IW()
,
riwish_Press()
,
rwish()